Электромобили

Алюминий-воздушная батарея позволит увеличить запас хода электромобиля до 1600 км

Алюминий-воздушная батарея позволит увеличить запас хода электромобиля до 1600 кмЛюбители электромобилей давно мечтают об аккумуляторах, которые позволят их четырехколесным друзьям преодолевать более полутора тысяч километров на одном заряде. Руководство израильского стартапа Phinergy полагает, что разрабатываемая специалистами компании алюминий-воздушная батарея отлично справится с этой задачей.

Генеральный директор Phinergy, Авив Сидон, на днях сообщил о начале партнерских отношений с крупным автопроизводителем. Ожидается, что дополнительное финансирование позволит компании наладить массовое производство революционных батарей уже к 2017 году.

На видеоролике (в конце статьи) репортер информагентства Bloomberg, Эллиот Готкин, разъезжает за рулем малолитражки Citroen C1, которая была преобразована в электромобиль. При этом в багажнике данной машины была установлена алюминий-воздушная батарея Phinergy.

Как сообщает автолаборатория, электромобиль Citroen C1 с литий-ионным аккумулятором может проехать не более 160 км на одном заряде, но алюминий-воздушная батарея Phinergy позволяет ему преодолевать дополнительные 1600 километров.

В видеоролике видно, что инженеры заполняют специальные резервуары внутри демонстрационного автомобиля дистиллированной водой. Прогнозируемый бортовым компьютером диапазон хода авто отображается на дисплее мобильного телефона гендиректора Phinergy.

Вода служит основой для электролита, через который проходят ионы, выделяя при этом энергию. Электричество идет на питание электродвигателей автомобиля. По словам инженеров стартапа, запас воды в резервуарах демонстрационного автомобиля необходимо пополнять «каждые несколько сотен километров».

В качестве анода в алюминий-воздушных батареях используются алюминиевые пластины, а наружный воздух выступает катодом. Алюминиевая составляющая системы медленно разрушается, так как молекулы металла соединяются с кислородом и выделяют энергию.

Если точнее: четыре атома алюминия, три молекулы кислорода и шесть молекул воды объединяются, чтобы создать четыре молекулы гидратированного оксида алюминия с выделением энергии.

Исторически сложилось так, что алюминий-воздушные батареи использовались лишь для нужд армии. Всему виной необходимость периодического удаления оксида алюминия и замены пластин алюминиевого анода.

Click here to preview your posts with PRO themes ››

Представители Phinergy говорят, что запатентованный катодный материал позволяет кислороду из наружного воздуха свободно попадать в аккумуляторную ячейку, при этом данный материал не позволяет диоксиду углерода, который также содержится в воздухе, загрязнять батарею. Именно это в большинстве случаев мешало нормальной эксплуатации алюминий-воздушных батарей в течение длительного периода. По крайней мере, до настоящего момента.

Специалисты компании также ведут разработку воздушно-цинковых аккумуляторов, которые можно подзаряжать с помощью электричества. В данном случае металлические электроды не разрушаются столь стремительно, как в случае алюминий-воздушных аналогов.

Сидон говорит, что энергия одной алюминиевой пластины помогает электромобилю преодолевать примерно 32 километра (это позволяет нам предположить, что удельная выработка электроэнергии на пластину составляет около 7 кВт*ч). Так вот в демонстрационной машине установлено 50 таких пластин.

Вся батарея, как отмечает топ-менеджер, весит всего 25 кг. Из этого следует, что ее плотность энергии более чем в 100 раз выше, чем у обычных литий-ионных аккумуляторов современного образца.

Вполне вероятно, что в случае серийной модели электромобиля батарея может стать значительно более тяжелой. К повышению ее массы приведет оснащение аккумулятора системой теплового кондиционирования и защитным кожухом, которых в прототипе не наблюдалось (судя по ролику).

В любом случае, появление аккумулятора с плотностью энергии, которая на порядок выше, чем у современных литий-ионных батарей, будет отличной новостью для автопроизводителей, которые сделали ставку на электрические машины — так как это, по существу, устраняет любые проблемы, вызванные ограниченной дальностью хода современных электрокаров.

Перед нами очень интересный прототип, но многие вопросы остаются без ответа. Как будет осуществляться эксплуатация алюминий-воздушных батарей в серийных электромобилях? Насколько сложной будет процедура замены алюминиевых пластин? Как часто придется их менять? (после 1500 км? после 5000 км? или реже?).

Click here to preview your posts with PRO themes ››

В доступных на данном этапе маркетинговых материалах не описано, каким будет совокупный углеродный след металл-воздушных батарей (с момента добычи сырья до монтажа аккумулятора в авто) по сравнению с современными литий-ионными аналогами.

Этот момент, вероятно, заслуживает детального изучения. И исследовательскую работу необходимо завершить до начала массового внедрения новой технологии, поскольку извлечение и переработка алюминиевых руд и создание пригодного к использованию металла — это очень энергоемкий процесс.

Тем не менее, не исключен еще один сценарий развития событий. Дополнительные металл-воздушные батареи могут быть добавлены к литий-ионным, но использоваться они будут лишь в случае поездок на дальние дистанции. Такой вариант может быть весьма привлекательным для производителей электромобилей, даже если батареи нового типа будут иметь более высокий углеродный след, чем литий-ионные аккумуляторы.

{uppod video=http://www.youtube.com/watch?v=x6LJJSLftIc comment=»Алюминий-воздушная батарея позволит увеличить запас»}

{social}

Статьи по теме

Кнопка «Наверх»